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Helicity Theorem and Vortex Lines in Superfluid 4He 
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The heticity conservation theorem is demonstrated in the case of superfluid 4He. 
As in the case of a classical barotropic fluid, the helicity integral expresses some 
topological properties of vortex lines. 

1. I N T R O D U C T I O N  

As not iced by Moreau  (1961) and later by  Moffat  (1969), if u satisfies 
the Euler equat ions o f  an ideal barot ropic  fluid in •3 

(0u+o ) P \ o t  -Vu + V p ( p )  = 0 

then the helicity integral (assuming that  it exists) 

I= f~3  u ' r ~  (1) 

is a constant  o f  mot ion.  It expresses certain topological  propert ies o f  the 
vortex lines. In  the case o f  vortex filaments, the integral depends  on whether  
or  not  the vortex lines are knot ted or  linked. I f  not,  then I = 0. Using the 
geometr ical  setting o f  superfluid equations,  we formulate  a more  general 
version o f  the helicity theorem which is valid in the case o f  an ideal classical 
fluid and superfluid 4He as well. 

2. E Q U A T I O N S  O F  T H E  S U P E R F L U I D  

To derive the flow equations,  one may trace the movemen t  o f  an 
"average  part icle"  o f  the fluid. The Hamil tonian  o f  such a particle can be 
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taken as H = m(lv2+/x) ,  where/x is the chemical potential. Similarly, one 
can define the action S 

OS 
- A~ = ( - H ,  p), c~ =0,  1,2,3 

Ox ,~ 

where p is the momentum of  the particle. As is known, because of  the 
appearance of  quantized vortex lines in the superfluid, the action is not a 
univalued function of  t and x; it changes its value by 2~i when going 
around a single vortex line. Therefore it is more convenient to work with 
the action 1-form (for convenience divided by the atomic mass of 4He) 

a = - ( t z  +iv2)  d t + v .  d x  (2) 

Note that ( r e ~ h ) S c  A =  n, the number of quanta of circulation within 
contour C. 

The second object which will be exploited here is the vorticity current 
2-form, denoted as J, J = J ~  dx ~ A dx ~. For any pair of vectors X, y c  E 4, 
we define J ( X ,  Y ) =  J~ t~(X~Y t3 - Y ~ X  t3) to be equal to h / m  multiplied by 
the number of  vortex lines crossing the surface element spanned on X, Y, 
taken with a plus sign if the orientation of the vortex line agrees with the 
orientation of  the element and with a minus sign otherwise. 

Since A and J are related by Stokes' theorem, they must satisfy the 
following equation: 

d a = J  (3) 

where d denotes the exterior derivative. This is a strict consequence of the 
definition of A and J. 

For more detailed analysis of equation (3) we need to specify the 
structure of./. Let us define the Galilean four-component vortex line velocity 
as V = (1, VL), VL = (VL, V 2, V3). 

The moving superfluid vortex lines are subjected to frictional forces 
from the side of the normal component and to the Magnus force appearing 
as a consequence of  the relative velocity of the vortex line and the superfluid. 
Depending on the level of description and the physics that is involved, 
various approximations can be used to complete the equations of the 
superfluid in the presence of vortex lines. In one extreme case a microscopic 
description can be used in which one traces the motion of every vortex line, 
as it was done, for example, by Schwarz (1988) in order to justify the Vinen's 
equations of  turbulent superfluid 4He. Another extreme case, useful for 
large densities of locally parallel vortex lines, consists in using the mean 
field description. In this case the vorticity, which is concentrated along the 
vortex filaments, is smeared out to obtain a continuous distribution. In this 
way one obtains the so-called HVBK equations (Hall and Vinen, 1956; 
Bekarevich and Khalatnikov, 1961). 
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According to Hall and Vinen, because of scattering, the rotons and 
phonons exert forces on a moving vortex line. In consequence, contrary to 
the case of an ordinary perfect fluid, the velocity of a quantized vortex line 
is different from the superfluid velocity. It moves in such a way that these 
extra forces are balanced by the Magnus force acting on the vortex line in 
the superfluid flow. Thus, in the presence of  vortex lines there exists a sort 
of  frictional force between both (superfluid and normal) fluid components. 
Consequently, the velocity of the line is assumed to be 

vL = ~s +/3 'os(v .  - ~ )  + /3ms x (v. - ~ , )  

where s=to / l to  [ is the unit vector tangent to the vortex line, w is the 
smeared-out superfluid vorticity, ~ - - v ~ - r o t ( A s ) ,  vs is the corresponding 
velocity of  the superfluid, and v, is the velocity of the normal fluid com- 
ponent. The coefficients /3, /3', and A and the densities p~ and /9, are 
temperature dependent.  The expression for VL used in the HVBK theory 
corresponds to what is called the local induction approximation and used 
in the microscopic description (e.g., Schwarz, 1988). The fact that VL ~ V~. 
leads to the necessity of imposing some additional boundary conditions in 
order to have the uniqueness of the initial boundary problem (Peradzynski, 
1988). 

Let for any vector X and any k-form, X J Q  denote the ( k - 1 ) - f o r m  
define by 

( X J Q )( Z1 ,  . . . , Zk-1)  := (~( X ,  Z l  . . . .  , Zk -1)  

The assumptions that  the vortex lines are neither disappearing nor generated 
spontaneously in the fluid, except for the boundary, and that they move 
with velocity VL result in the following relation: 

V J J  =0  (4) 

In order to demonstrate this, let us take a small segment 61 at rest in 
the considered system of coordinates. As follows from the definition of J, 
within the time interval 6t the segment is crossed by (Jo~ - J~o)M~6t vortex 
lines. Obviously, when the segment moves together with the vortex lines, 
this quantity is equal to zero. This implies that in the system comoving with 
vortex lines, ( J o ~ - J ~ o ) 3 l  ~ is equal to zero for any 6U. In this system, 
however, V = (1, 0, 0, 0), (V_3 J)(t~l) = (Jo,~ - J ~ o )  6~1, and therefore V_lJ = 0 
in any system. As Jo~ = 0  (antisymmetry of  J ~ )  in this comoving system, 
we have J = 03, where 03 is a purely spatial form, 03 = 03~b clx ~ A dx  b, a, b =- 

1, 2, 3. Transforming it back to the laboratory system ( d x  ~ ~ dx  ~ - v ~  dt) ,  
one arrives at 

J = 03 + (VL-J 03) ^d t  (5) 
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^ VL(toab--tob~) dx b. The above representation allows one to where Ir L .-] O.) -~" a ^ ^ 

associate J with the vorticity field. Indeed, to any skew-symmetric 2-form 
o3 in R 3 there corresponds a vector field to (to~ ~ abe : ~e  Wbc, e an alternating 
symbol). One can rather easily verify the following lemmas (Peradzynski, 
1988). 

Lemma 1. The equation dA = J is equivalent to the following set of 
equations: 

aVs 
- - + v s "  Vv~ +V/z = - to  x (vL-vs) 
Ot (6) 

rot Vs = to 

Taking the exterior derivative of  both sides of  equation (3), one obtains 

dJ=O (7) 

which is the conservation of  vorticity. We have the following result. 

Lemma 2. In a Cartesian system of  coordinates, the equation dJ = 0 
is equivalent to 

tgto 
- - + r o t ( t o  xvL) = 0, divto = 0  (8) 
Ot 

The full set of equations must also contain the continuity equation, 
the equations for the normal fluid component,  and the thermodynamic 
relations, which, however, will not be considered here. 

Summariziiag, the basic equations of the superfluid are 

d A = J ,  J=o3+(vL I o 3 ) ^ d t  (9) 

while dJ = 0 is their consequence. Equations (9) are equivalent to 

V A d A  =O 

which is t he  simplest way of writing the flow equations. In the vector 
notation it is equivalent to the first of equations (6) in which to is replaced 
by rot vs and it expresses the fact that vortices (represented by dA) are 
traveling with velocity V = (1, VL)- 

3. CONSERVATION OF HELICITY AND T O P O L O G Y  OF 
VORTEX LINES 

Let us define the helicity current 3-form ~ in the space-time E 4, 

3(:= A A dA 
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We have d ~  = dA ^ dA --- J A J. However ,  in the comoving  system o f  coordin-  
ates, J = o3 and therefore J ^ J = o3 ^ o3 = 0. Thus, J ^ J vanishes in any 
systems o f  coordinates.  Therefore  

d ~ =  0 

and ~ represents a conserved current. Expressing this in terms of  o3 and 
vs, one obtains 

-(~v~+ tx)w ^ dt+ v~ ^ (vr lo3) ^ dt + v~ ^ o3 

By the natural  duali ty between 3-forms and vectors (vector densities) 
in E 4, we may  define the helicity flux vector  field ~ : =  (y(o, ~r where in a 
Cartesian system 

~ = v ~ - o , ,  ye = +(~v~+ ~),o +v~ x (v~ x,o) 

Then the conservat ion equat ion d ~  = 0 is equivalent  to 

a ~  ~ 

- - +  div Yg = 0 
Ot 

The fol lowing theorem is an obvious consequence  o f  our  considerations.  

Theorem 1. Let for  any t, dA be of  compac t  suppor t  as a funct ion o f  
x ~, x 2, x 3, and let t ~ Et be a foliation o f  hypersurfaces  in E 4 parametr ized 
by t; then S~, A ^ dA does not  depend  on t. 

Indeed ,  for  any domain  ~ with piecewise smooth  boundary ,  in the 
space-t ime we have 

fo a ^ d A =  f~  (10) 

Taking for  1~ the domain  conta ined  between hypersurfaces  "~o and E,,  one 
arrives at the thesis. 

In part icular,  if E, are hypersurfaces  t = const  in a Cartesian system 
o f  coordinates ,  then we have 

fo a A^da=f< , = o) vs " r~ v~ d 3 x -  fa(, = ,o) v~" r ~  = 0 (11) 

which expresses the conservat ion o f  helicity in the form already known in 
classical fluid dynamics.  

Theorem 2. Let E be a b o u n d e d  piece o f  a three-dimensional  hyper-  
surface. Then  ~ A A dA does not depend  on the gauge t ransformat ions  
A-~ A + d~b provided  that  either ~b = 0 on OE or d~b ^ A = 0 on OZ. 
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For the proof, notice that the following equalities are true: 

f dch^dA=f d(4~dA)=foz4~dA=fo A^dqb 
In particular, ~n3 vs" rot vs d3x, where rot vs is vanishing at ~ (say, it is of 
compact support), does not depend on the gauge transformations v ~ v + V ~b. 
As was noticed by Moffat (1969), this integral is related to the "degree of 
knottedness" of vortex lines. 

Suppose that vorticity is concentrated along a contour C. Any knotted 
contour can be transformed into a number of possibly linked simple circuits 
by inserting in certain places the pairs of segments of equal but opposite 
vorticity (Figure 1). For example, for a pair of linked contours C', C" in 
~3 the number 

1 ~c~c (x'-x")'(dl"xdl') 
n , i x , _ x , , i  3 ( 1 2 )  

is an integer (Flanders, 1963) called the "winding" number of C'  and C". 
The integral (12) corresponds to the helicity integral (11) for a special 
velocity field 

I f~ (X--X')• d3x, vo(x) = -~--~ 3 Ix - x ' l  3 (13) 

where the vorticity w(x') of unit strength is concentrated along C' and C" 
and therefore it is the same as was concentrated along C. Any solution vs 
of rotv~ = w  with given w can be transformed to the form (13) with the 
help of some gauge transformation. Moreover, in proving the helicity 
conservation theorem, we have not used any specific assumption about the 
vector field vL which is responsible for the deformation of the vorticity field 

Fig. 1. 
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reconnection 

Fig. 2. 

to. Therefore, the helicity integral does not depend on the specific field to; 
it depends on the topological properties of  to. 

In his approach to the superfluid turbulence, Schwarz (1978) proposed 
certain mechanism of reconnecting vortex lines when they cross each other. 
One may easily check that the reconnection mechanism proposed by 
Schwarz makes it possible to unknot the nontrivial knots or unlink the 
nontrivial links (Figure 2), thus violating the helicity conservation. This 
seems to suggest that the reconnection processes may lead to the appearance 
of  extra forces (possibly dissipative) which were not taken into account in 
existing models. 

Substitution of  VL=V and i ~ = S [ d p / p ( p ) ]  converts the superfluid 
equations (3) into equations of the classical barotropic fluid. Although in 
this paper  we considered the Galilean superfluid, one can easily generalize 
all the results to the relativistic case. This can be done by taking A = I~ U,~ dx  '~, 

where /~ is the specific (per particle) chemical potential in the system at 
rest and Us = g ~  U s is the covariant four-component velocity. Obviously, 
in order to obtain the structure of J [see equation (9)] the Lorentz transfor- 
mation must be used. 

As in the Galilean case, the superfluid equations can be written as 

V 2 d A  = 0 

which implies that d A  A d A  represents the conserved helicity current. 
Clearly, to complete the flow equations, the appropriate (relativistic) 
expression for V is needed. For a barotropic perfect fluid V ~ = U% 
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